Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(45): 7511-7522, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940592

RESUMEN

Real-world actions require one to simultaneously perceive, think, and act on the surrounding world, requiring the integration of (bottom-up) sensory information and (top-down) cognitive and motor signals. Studying these processes involves the intellectual challenge of cutting across traditional neuroscience silos, and the technical challenge of recording data in uncontrolled natural environments. However, recent advances in techniques, such as neuroimaging, virtual reality, and motion tracking, allow one to address these issues in naturalistic environments for both healthy participants and clinical populations. In this review, we survey six topics in which naturalistic approaches have advanced both our fundamental understanding of brain function and how neurologic deficits influence goal-directed, coordinated action in naturalistic environments. The first part conveys fundamental neuroscience mechanisms related to visuospatial coding for action, adaptive eye-hand coordination, and visuomotor integration for manual interception. The second part discusses applications of such knowledge to neurologic deficits, specifically, steering in the presence of cortical blindness, impact of stroke on visual-proprioceptive integration, and impact of visual search and working memory deficits. This translational approach-extending knowledge from lab to rehab-provides new insights into the complex interplay between perceptual, motor, and cognitive control in naturalistic tasks that are relevant for both basic and clinical research.


Asunto(s)
Accidente Cerebrovascular , Realidad Virtual , Humanos , Objetivos , Memoria a Corto Plazo , Cognición
2.
Front Neurosci ; 17: 1249539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841685

RESUMEN

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.

3.
Neuropsychologia ; 188: 108657, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543139

RESUMEN

Non-arbitrary mapping between the sound of a word and its meaning, termed sound symbolism, is commonly studied through crossmodal correspondences between sounds and visual shapes, e.g., auditory pseudowords, like 'mohloh' and 'kehteh', are matched to rounded and pointed visual shapes, respectively. Here, we used functional magnetic resonance imaging (fMRI) during a crossmodal matching task to investigate the hypotheses that sound symbolism (1) involves language processing; (2) depends on multisensory integration; (3) reflects embodiment of speech in hand movements. These hypotheses lead to corresponding neuroanatomical predictions of crossmodal congruency effects in (1) the language network; (2) areas mediating multisensory processing, including visual and auditory cortex; (3) regions responsible for sensorimotor control of the hand and mouth. Right-handed participants (n = 22) encountered audiovisual stimuli comprising a simultaneously presented visual shape (rounded or pointed) and an auditory pseudoword ('mohloh' or 'kehteh') and indicated via a right-hand keypress whether the stimuli matched or not. Reaction times were faster for congruent than incongruent stimuli. Univariate analysis showed that activity was greater for the congruent compared to the incongruent condition in the left primary and association auditory cortex, and left anterior fusiform/parahippocampal gyri. Multivoxel pattern analysis revealed higher classification accuracy for the audiovisual stimuli when congruent than when incongruent, in the pars opercularis of the left inferior frontal (Broca's area), the left supramarginal, and the right mid-occipital gyri. These findings, considered in relation to the neuroanatomical predictions, support the first two hypotheses and suggest that sound symbolism involves both language processing and multisensory integration.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Estimulación Acústica/métodos , Lenguaje , Simbolismo , Imagen por Resonancia Magnética/métodos , Percepción Auditiva , Percepción Visual , Mapeo Encefálico
4.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425853

RESUMEN

Non-arbitrary mapping between the sound of a word and its meaning, termed sound symbolism, is commonly studied through crossmodal correspondences between sounds and visual shapes, e.g., auditory pseudowords, like 'mohloh' and 'kehteh', are matched to rounded and pointed visual shapes, respectively. Here, we used functional magnetic resonance imaging (fMRI) during a crossmodal matching task to investigate the hypotheses that sound symbolism (1) involves language processing; (2) depends on multisensory integration; (3) reflects embodiment of speech in hand movements. These hypotheses lead to corresponding neuroanatomical predictions of crossmodal congruency effects in (1) the language network; (2) areas mediating multisensory processing, including visual and auditory cortex; (3) regions responsible for sensorimotor control of the hand and mouth. Right-handed participants ( n = 22) encountered audiovisual stimuli comprising a simultaneously presented visual shape (rounded or pointed) and an auditory pseudoword ('mohloh' or 'kehteh') and indicated via a right-hand keypress whether the stimuli matched or not. Reaction times were faster for congruent than incongruent stimuli. Univariate analysis showed that activity was greater for the congruent compared to the incongruent condition in the left primary and association auditory cortex, and left anterior fusiform/parahippocampal gyri. Multivoxel pattern analysis revealed higher classification accuracy for the audiovisual stimuli when congruent than when incongruent, in the pars opercularis of the left inferior frontal (Broca's area), the left supramarginal, and the right mid-occipital gyri. These findings, considered in relation to the neuroanatomical predictions, support the first two hypotheses and suggest that sound symbolism involves both language processing and multisensory integration. HIGHLIGHTS: fMRI investigation of sound-symbolic correspondences between auditory pseudowords and visual shapesFaster reaction times for congruent than incongruent audiovisual stimuliGreater activation in auditory and visual cortices for congruent stimuliHigher classification accuracy for congruent stimuli in language and visual areasSound symbolism involves language processing and multisensory integration.

5.
Exp Brain Res ; 241(4): 1077-1087, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36869269

RESUMEN

An important window into sensorimotor function is how humans interact and stop moving projectiles, such as stopping a door from closing shut or catching a ball. Previous studies have suggested that humans time the initiation and modulate the amplitude of their muscle activity based on the momentum of the approaching object. However, real-world experiments are constrained by laws of mechanics, which cannot be manipulated experimentally to probe the mechanisms of sensorimotor control and learning. An augmented-reality variant of such tasks allows for experimental manipulation of the relationship between motion and force to obtain novel insights into how the nervous system prepares motor responses to interact with moving stimuli. Existing paradigms for studying interactions with moving projectiles use massless objects and are primarily focused on quantifying gaze and hand kinematics. Here, we developed a novel collision paradigm using a robotic manipulandum where participants mechanically stopped a virtual object moving in the horizontal plane. On each block of trials, we varied the virtual object's momentum by increasing either its velocity or mass. Participants stopped the object by applying a force impulse that matched the object momentum. We observed that hand force increased as a function of object momentum linked to changes in virtual mass or velocity, similar to results from studies involving catching free-falling objects. In addition, increasing object velocity resulted in later onset of hand force relative to the impending time-to-contact. These findings show that the present paradigm can be used to determine how humans process projectile motion for hand motor control.


Asunto(s)
Fuerza de la Mano , Mano , Humanos , Fuerza de la Mano/fisiología , Mano/fisiología , Desempeño Psicomotor/fisiología , Aprendizaje , Movimiento (Física)
6.
Neurorehabil Neural Repair ; 37(2-3): 119-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36786394

RESUMEN

BACKGROUND: After stroke, increases in contralesional primary motor cortex (M1CL) activity and excitability have been reported. In pre-clinical studies, M1CL reorganization is related to the extent of ipsilesional M1 (M1IL) injury, but this has yet to be tested clinically. OBJECTIVES: We tested the hypothesis that the extent of damage to the ipsilesional M1 and/or its corticospinal tract (CST) determines the magnitude of M1CL reorganization and its relationship to affected hand function in humans recovering from stroke. METHODS: Thirty-five participants with a single subacute ischemic stroke affecting M1 or CST and hand paresis underwent MRI scans of the brain to measure lesion volume and CST lesion load. Transcranial magnetic stimulation (TMS) of M1IL was used to determine the presence of an electromyographic response (motor evoked potential (MEP+ and MEP-)). M1CL reorganization was determined by TMS applied to M1CL at increasing intensities. Hand function was quantified with the Jebsen Taylor Hand Function Test. RESULTS: The extent of M1CL reorganization was related to greater lesion volume in the MEP- group, but not in the MEP+ group. Greater M1CL reorganization was associated with more impaired hand function in MEP- but not MEP+ participants. Absence of an MEP (MEP-), larger lesion volumes and higher lesion loads in CST, particularly in CST fibers originating in M1 were associated with greater impairment of hand function. CONCLUSIONS: In the subacute post-stroke period, stroke volume and M1IL output determine the extent of M1CL reorganization and its relationship to affected hand function, consistent with pre-clinical evidence.ClinicalTrials.gov Identifier: NCT02544503.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Humanos , Volumen Sistólico , Encéfalo , Estimulación Magnética Transcraneal , Potenciales Evocados Motores/fisiología
7.
Front Neurol ; 13: 836716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693005

RESUMEN

Abnormal contralesional M1 activity is consistently reported in patients with compromised upper limb and hand function after stroke. The underlying mechanisms and functional implications of this activity are not clear, which hampers the development of treatment strategies targeting this brain area. The goal of the present study was to determine the extent to which contralesional M1 activity can be explained by the demand of a motor task, given recent evidence for increasing ipsilateral M1 activity with increasing demand in healthy age-matched controls. We hypothesized that higher activity in contralesional M1 is related to greater demand on precision in a hand motor task. fMRI data were collected from 19 patients with ischemic stroke affecting hand function in the subacute recovery phase and 31 healthy, right-handed, age-matched controls. The hand motor task was designed to parametrically modulate the demand on movement precision. Electromyography data confirmed strictly unilateral task performance by all participants. Patients showed significant impairment relative to controls in their ability to perform the task in the fMRI scanner. However, patients and controls responded similarly to an increase in demand for precision, with better performance for larger targets and poorer performance for smaller targets. Patients did not show evidence of elevated ipsilesional or contralesional M1 blood oxygenation level-dependent (BOLD) activation relative to healthy controls and mean BOLD activation levels were not elevated for patients with poorer performance relative to patients with better task performance. While both patients and healthy controls showed demand-dependent increases in BOLD activation in both ipsilesional/contralateral and contralesional/ipsilateral hemispheres, patients with stroke were less likely to show evidence of a linear relationship between the demand on precision and BOLD activation in contralesional M1 than healthy controls. Taken together, the findings suggest that task demand affects the BOLD response in contralesional M1 in patients with stroke, though perhaps less strongly than in healthy controls. This has implications for the interpretation of reported abnormal bilateral M1 activation in patients with stroke because in addition to contralesional M1 reorganization processes it could be partially related to a response to the relatively higher demand of a motor task when completed by patients rather than by healthy controls.

8.
J Neurophysiol ; 126(5): 1592-1603, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614375

RESUMEN

Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit deficits in interactions between the two streams during demanding motor tasks. Older adults (n = 15) and young controls (n = 26) performed reaching or interception movements toward virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions.NEW & NOTEWORTHY Older adults show declines in vision, decision-making, and motor control, which can lead to functional limitations. We used a rapid visuomotor decision task to examine how these deficits may interact to affect task performance. Compared with healthy young adults, older adults made more errors in both decision-making and motor execution, especially when the task required intercepting moving targets. This suggests that age-related declines in integrating perceptual and motor information may contribute to functional deficits.


Asunto(s)
Envejecimiento/fisiología , Toma de Decisiones/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Factores de Edad , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Neuroimage ; 241: 118430, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314848

RESUMEN

PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Análisis de Datos , Bases de Datos Factuales/normas , Imagen por Resonancia Magnética/normas , Espectroscopía de Resonancia Magnética/normas , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos
10.
Front Neurol ; 11: 835, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849253

RESUMEN

Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.

11.
J Neurophysiol ; 124(3): 728-739, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32727264

RESUMEN

In functional magnetic resonance imaging (fMRI) studies, performance of unilateral hand movements is associated with primary motor cortex activity ipsilateral to the moving hand (M1ipsi), in addition to contralateral activity (M1contra). The magnitude of M1ipsi activity increases with the demand on precision of the task. However, it is unclear how demand-dependent increases in M1ipsi recruitment relate to the control of hand movements. To address this question, we used fMRI to measure blood oxygenation level-dependent (BOLD) activity during performance of a task that varied in demand on precision. Participants (n = 23) manipulated an MRI-compatible joystick with their right or left hand to move a cursor into targets of different sizes (small, medium, large, extra large). Performance accuracy, movement time, and number of velocity peaks scaled with target size, whereas reaction time, maximum velocity, and initial direction error did not. In the univariate analysis, BOLD activation in M1contra and M1ipsi was higher for movements to smaller targets. Representational similarity analysis, corrected for mean activity differences, revealed multivoxel BOLD activity patterns during movements to small targets were most similar to those for medium targets and least similar to those for extra-large targets. Only models that varied with demand (target size, performance accuracy, and number of velocity peaks) correlated with the BOLD dissimilarity patterns, though differently for right and left hands. Across individuals, M1contra and M1ipsi similarity patterns correlated with each other. Together, these results suggest that increasing demand on precision in a unimanual motor task increases M1 activity and modulates M1 activity patterns.NEW & NOTEWORTHY Contralateral primary motor cortex (M1) predominantly controls unilateral hand movements, but the role of ipsilateral M1 is unclear. We used functional magnetic resonance imaging (fMRI) to investigate how M1 activity is modulated by unimanual movements at different levels of demand on precision. Our results show that task characteristics related to demand on precision influence bilateral M1 activity, suggesting that in addition to contralateral M1, ipsilateral M1 plays a key role in controlling hand movements to meet performance precision requirements.


Asunto(s)
Mapeo Encefálico , Lateralidad Funcional/fisiología , Mano/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen
12.
J Neurophysiol ; 123(6): 2235-2248, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374224

RESUMEN

Visual processing in parietal areas of the dorsal stream facilitates sensorimotor transformations for rapid movement. This action-related visual processing is hypothesized to play a distinct functional role from perception-related processing in the ventral stream. However, it is unclear how the two streams interact when perceptual identification is a prerequisite to executing an accurate movement. In the current study, we investigated how perceptual decision-making involving the ventral stream influences arm and eye movement strategies. Participants (n = 26) moved a robotic manipulandum using right whole arm movements to rapidly reach a stationary object or intercept a moving object on an augmented-reality display. On some blocks of trials, participants needed to identify the shape of the object (circle or ellipse) as a cue to either hit the object (circle) or move to a predefined location away from the object (ellipse). We found that during perceptual decision-making, there was an increased urgency to act during interception movements relative to reaching, which was associated with more decision errors. Faster hand reaction times were associated with a strategy to adjust the movement postinitiation, and this strategy was more prominent during interception. Saccadic reaction times were faster and initial saccadic peak velocity, initial gaze lags, and gains greater during decisions, suggesting that eye movements adapt to perceptual decision-making requirements. Together, our findings suggest that the integration of ventral stream information with visuomotor planning depends on imposed (or perceived) task demands.NEW & NOTEWORTHY Visual processing for perception and for action is thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.


Asunto(s)
Toma de Decisiones/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Seguimiento Ocular Uniforme/fisiología , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Tiempo de Reacción/fisiología , Movimientos Sacádicos/fisiología , Adulto Joven
13.
J Neurosci ; 38(20): 4724-4737, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29686047

RESUMEN

Anticipatory load forces for dexterous object manipulation in humans are modulated based on visual object property cues, sensorimotor memories of previous experiences with the object, and, when digit positioning varies from trial to trial, the integrating of this sensed variability with force modulation. Studies of the neural representations encoding these anticipatory mechanisms have not considered these mechanisms separately from each other or from feedback mechanisms emerging after lift onset. Here, representational similarity analyses of fMRI data were used to identify neural representations of sensorimotor memories and the sensing and integration of digit position. Cortical activity and movement kinematics were measured as 20 human subjects (11 women) minimized tilt of a symmetrically shaped object with a concealed asymmetric center of mass (CoM, left and right sided). This task required generating compensatory torques in opposite directions, which, without helpful visual CoM cues, relied primarily on sensorimotor memories of the same object and CoM. Digit position was constrained or unconstrained, the latter of which required modulating forces beyond what can be recalled from sensorimotor memories to compensate for digit position variability. Ventral premotor (PMv), somatosensory, and cerebellar lobule regions (CrusII, VIIIa) were sensitive to anticipatory behaviors that reflect sensorimotor memory content, as shown by larger voxel pattern differences for unmatched than matched CoM conditions. Cerebellar lobule I-IV, Broca area 44, and PMv showed greater voxel pattern differences for unconstrained than constrained grasping, which suggests their sensitivity to monitor the online coincidence of planned and actual digit positions and correct for a mismatch by force modulation.SIGNIFICANCE STATEMENT To pick up a water glass without slipping, tipping, or spilling requires anticipatory planning of fingertip load forces before the lift commences. This anticipation relies on object visual properties (e.g., mass/mass distribution), sensorimotor memories built from previous experiences (especially when object properties cannot be inferred visually), and online sensing of where the digits are positioned. There is limited understanding of how the brain represents each of these anticipatory mechanisms. We used fMRI measures of regional brain patterns and digit position kinematics before lift onset of an object with nonsalient visual cues specifically to isolate sensorimotor memories and integration of sensed digit position with force modulation. In doing so, we localized neural representations encoding these anticipatory mechanisms for dexterous object manipulation.


Asunto(s)
Dedos/fisiología , Memoria/fisiología , Destreza Motora/fisiología , Adolescente , Adulto , Anticipación Psicológica , Fenómenos Biomecánicos/fisiología , Cerebelo/crecimiento & desarrollo , Cerebelo/fisiología , Femenino , Dedos/inervación , Fuerza de la Mano/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Movimiento/fisiología , Desempeño Psicomotor , Sensación/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiología , Torque , Adulto Joven
15.
J Neurosci ; 34(20): 6860-73, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828640

RESUMEN

Neurophysiology and neuroimaging evidence shows that the brain represents multiple environmental and body-related features to compute transformations from sensory input to motor output. However, it is unclear how these features interact during goal-directed movement. To investigate this issue, we examined the representations of sensory and motor features of human hand movements within the left-hemisphere motor network. In a rapid event-related fMRI design, we measured cortical activity as participants performed right-handed movements at the wrist, with either of two postures and two amplitudes, to move a cursor to targets at different locations. Using a multivoxel analysis technique with rigorous generalization tests, we reliably distinguished representations of task-related features (primarily target location, movement direction, and posture) in multiple regions. In particular, we identified an interaction between target location and movement direction in the superior parietal lobule, which may underlie a transformation from the location of the target in space to a movement vector. In addition, we found an influence of posture on primary motor, premotor, and parietal regions. Together, these results reveal the complex interactions between different sensory and motor features that drive the computation of sensorimotor transformations.


Asunto(s)
Objetivos , Corteza Motora/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/fisiología , Estimulación Luminosa
16.
Exp Brain Res ; 220(1): 11-22, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22623090

RESUMEN

Precise left-hand movements take longer than right-hand movements (for right-handers). To quantify how left-hand movements are affected by task difficulty and phase of movement control, we manipulated the difficulty of repetitive speeded aiming movements while participants used the left or right hand. We observed left-hand costs in both initial impulse and current control phases of movement. While left-hand cost during the initial impulse phase was small, left-hand cost during the current control phase varied from 10 to 60 ms, in direct proportion to the movement's difficulty as quantified by Fitts' law (0.77 < R² < 0.99, across three experiments). In particular, in comparison with a difficult task for the right hand (Fitts' ID(R) = 6.6), the left hand's task would have to be made easier by 0.5 bits (ID(L) = 6.1) to be performed as quickly. The left-hand cost may reflect the time required for callosal transfer of information between the left and right hemispheres during the current control phase of precision left-hand movements or reflect movement control differences in the current control phase of movement that are inherent to the hemispheres. Overall, the present results support multiphase models of movement generation, in which separate specialized processes contribute to the launching and completion of precision hand movements.


Asunto(s)
Lateralidad Funcional/fisiología , Mano/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Femenino , Humanos , Masculino , Fenómenos Fisiológicos Musculoesqueléticos , Tiempo de Reacción/fisiología , Factores de Tiempo , Adulto Joven
17.
Exp Brain Res ; 207(1-2): 133-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20931178

RESUMEN

According to Fitts' Law, the time (MT) to move to a target is a linear function of the logarithm of the ratio between the target's distance and width. Although Fitts' Law accurately predicts MTs for direct movements, it does not accurately predict MTs for indirect movements, as when an obstacle intrudes on the direct movement path. To address this limitation, Jax et al. (2007) added an obstacle-intrusion term to Fitts' Law. They accurately predicted MTs around obstacles in two-dimensional (2-D) workspaces, but their model had one more parameter than Fitts' Law did and was merely descriptive. In this study, we addressed these concerns by turning to the mechanistic, posture-based (PB) movement planning model. The PB-based model accounted for almost as much MT variance in a 3-D movement task as the model of Jax et al., with only two parameters, the same number of parameters as in Fitts' Law.


Asunto(s)
Actividad Motora/fisiología , Movimiento/fisiología , Postura/fisiología , Desempeño Psicomotor/fisiología , Femenino , Humanos , Masculino , Modelos Biológicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...